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Abstract

• Our objectives:

➢ Verify existence of self-reported migraine 

chatter on social media

➢ Develop supervised text classifier for detecting 

self-reported migraine post

➢ Assess the utility of social media for studying 

cohort-specific challenges. 

• Expert-annotated 5750 Tweets & 302 Reddit posts

• Best system F1 score 0.90 (Twitter), 0.93 (Reddit)

• Analysis show sentiment trends associated with 

migraine medications

Background

• Patient-generated social media data captures 

daily habits/interests[1]

• Social media with NLP improve patient-centered 

outcomes in cohort studies

• Example: breast cancer, substance use[2,3]

• Studies[4] investigated migraine using social media.

• Unclear if such methods are portable to other 

social media platforms

Model Precision Recall F1-score (95% CI)

Twitter Data

RoBERTa 0.84 0.95 0.89 (0.87-0.91)

SciBERT 0.87 0.89 0.88 (0.85-0.90)

BioBERT 0.88 0.89 0.88 (0.86-0.91)

BioClinicalBERT 0.85 0.91 0.88 (0.86-0.91)

BERTweet 0.88 0.91 0.90 (0.87-0.92)

Clinical_KB_BERT 0.86 0.91 0.88 (0.85-0.90)

External: Reddit data

RoBERTa 0.91 0.95 0.93 (0.91-0.95)

BERTweet 0.89 0.90 0.90 (0.87-0.93)

Classification Results

Figure 1: The development framework of system. 

Methodology Medication Sentiments

• Error analysis show lack of context, ambiguous reference 

to word “migraine” as primary false positives

• Hard to spot such errors, even for human annotator

• Manual Bias analysis on 5% of all tweets in test set

• Changes in gender words didn’t alter classification results
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Dataset

Figure 2: Sentiments across migraine medication groups

Table 1: Classification results of different transformer-based models

SCAN ME

Conclusion

Social media can enhance EHRs by providing ongoing 

data on migraine management.

Developed NLP framework effectively analyzes social 

media for migraine insights.
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